Toggle navigation
登录 | 注册
联系我们
网站首页
政策资讯
招生院校
招生专业
志愿填报
考生须知
热门问答
复习资料
考前辅导
搜索
智能填报
首页
复习资料
数学
备考经验
3+证书数学三角函数怎么学?只需要这8种数学思维方法!
收藏
38 阅读
0 评论
0 点赞
0
1
方程的思维
例1.
已知sinθ+cosθ=
,θ
(0,π),则cotθ=________。
解析:
由sinθ+cosθ=
平方得
sinθcosθ=
。
又θ
(0,π),
所以sinθ>0,cosθ<0,
且sinθ>
,
将sinθ,cosθ看作是方程
的两根。
所以sinθ=
,cosθ=
。
从而cotθ=
,应填
。
0
2
函数的思维
例2.
已知x,y ∈[
],且x3+sinx-2a=0①,4y3+sinycosy+a=0②,求cos(x+2y)的值。
解析:
设f(u)=u3+sinu。
由①式得f(x)=2a,由②式得
f(2y)=-2a。
因为f(u)在区间[
]上是单调
奇函数
,
所以f(x)=-f(2y)=f(-2y)。
又所因x,-2y∈[
],
所以x=-2y,即x+2y=0。
所以cos(x+2y)=1。
0
3
数形结合思维
例3.
函数f(x)=sinx+2
,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是______。
解析:
f(x)=
函数f(x)=sinx+2
,x∈[0,2π]的图象(如图1)与直线y=k有且仅有两个不同的交点,则1<k<3。
0
4
化归的思维
例4.
设α为
第四象限
的角,若
,则tan2α=_________。
解析:
因为
=
=
=
,
所以,tan2
=
。
又因为
为第四象限的角,
所以tan
=
,
从而求得tan2
=
。
0
5
分类讨论的思维
例5.
若△ABC的三内角满足sinA=
①,问此三角形是否可能为直角三角形?
解析:
假设△ABC可以为直角三角形。
(1)若B=90°,则A=90°-C,代入①中,得
sin(90°-C)=
,
所以cos2C=1+sinC,1-sin2C=1+sinC,
所以sinC=1,即C=90°。这是不可能的,所以B≠90°。
(2)同理,C≠90°。
(3)若A=90°。
①式右边=
①式左边=sinA=sin90°=1。
所以此三角形可为直角三角形,此时A=90°。
0
6
换元的思维
例6.
已知sin3θ+cos3θ=1,求sinθ+cosθ的值。
解析:
因为sin3θ+cos3θ
=(sinθ+cosθ)(sin2θ+cos2θ-sinθcosθ)
=(sinθ+cosθ)(1-sinθcosθ)
所以(sinθ+cosθ)(1-sinθcosθ)=1。
设sinθ+cosθ=x(
),
则sinθcosθ=
。
所以x
,
即x3-3x+2=0,(x-1)2(x+2)=0。
因为
,
所以x-1=0,得x=1。
所以sinθ+cosθ=1。
0
7
整体的思维
例7.:
证明
cos
。
证明:
设
,
b=
,
则ab=
=
=
。
因为b≠0,
所以a=
。即原式得证。
0
8
类比联想的思维
例8.
已知λ为非零常数,x∈R,且f(x+λ)=
。问f(x)是否是
周期函数
?若是,求出它的一个周期;若不是,请说明理由。
分析:
由于探索的是周期函数的问题,容易联想到三角函数。又f(x+λ)=
的结构的形式极易与tan(x+
)=
进行类比,故可把tanx看成是f(x)的一个原型实例,且题中的λ相当于实例中的
。由于周期函数tanx的周期T=4·
,故可猜想f(x)也为周期函数,且周期为4λ。
解:
f(x+2λ)=f[(x+λ)+λ]
=
,
则f(x+4
)=f[(x+2
)+2
]
=
。
所以f(x)是周期函数,且4
是它的一个周期。
本文分类:
备考经验
本文标签:无
浏览次数:
38
次浏览
发布日期:2025-04-28 17:37:36
本文链接:
http://www.gaozhigaokao.net/shuxuebeikaojingyan/694.html
上一篇 >
中职数学-第一章 复习与回顾
下一篇 >
3+证书数学公式大全
广州市招生考试委员会办公室 | 关于做好我市2025年普通高考报名准备工作的通知
政策解读 | 教育部:围绕人工智能等重点方向开设“微专业”
浅谈新能源汽车的检测与维修
新能源汽车检测维修专业能力评价实施机构名单更新了